781.裂

    781.裂 (第3/3页)

。这是各种癌症中与远处转移有关的转移性癌细胞的主要特征。

    ?事实上,昼夜节律基因的失调导致了NSCLC的代谢失调,HLF广泛参与了多种物质代谢过程,包括脂质和氧化代谢。

    ?在低血清(1%)和低葡萄糖(1g/L)培养液组成的低营养条件下,HLF过表达抑制了

    NSCLC细胞的增殖,但增加了凋亡潜能,反之亦然(图4C-E)。

    ?HLF参与了癌细胞生长培养基的营养代谢,这是HLF抑制NSCLC细胞生长的前提条件。

    ?在低营养条件下观察NSCLC细胞HLF对葡萄糖、脂肪酸和蛋白质的影响。如补充图6A,HLF表达的改变并不影响总蛋白含量。然而,HLF的上调降低了葡萄糖、甘油三酯的消耗和乳酸的分泌,但增加了游离脂肪酸的水平(图4F–I)。

    ?矛盾的是,上调HLF增加了细胞内ATP的总产生和LDH的活性(补充图6B和C)。这些发现表明,在低营养条件下,过表达HLF的癌细胞更容易发生有氧代谢而不是厌氧代谢,这进一步支持了上调HLF降低乳酸脱氢酶(LDH)的活性,厌氧糖酵解限速酶,一些厌氧糖酵解和乳酸发酵相关基因,但增强了多个三羧酸循环相关基因(。

    ?相反,沉默HLF则表现出相反的代谢特性,促进了NSCLC细胞的厌氧代谢(图4F-I和补充图6C和D)。上诉结果表明,低表达HLF促进非小细胞肺癌细胞的厌氧代谢。

    ?事实上,即使在氧含量正常的情况下,癌细胞也表现出葡萄糖代谢特征的改变,更倾向于无氧代谢,这一现象被称为“瓦伯格效应”。综上所述,我们的结果表明,低表达HLF可促进NSCLC细胞从三羧酸循环向厌氧代谢的首选代谢途径的转换,从而进一步促进细胞在低营养条件下的生长。

    ?为了进一步确定低营养条件下HLF抑制NSCLC生长和转移的潜在机制,我们将多个信号通路的荧光素酶报告质粒转染到NSCLC细胞中。如图5A所示,上调HLF显著增强了NSCLC细胞PPAR信号活性,抑制了NF-κB信号活性;相反,沉默HLF则产生相反的效果(图5A)。

    ?基于TCGA的NSCLC数据集中HLF的表达进行了基因集富集分析(GSEA),结果显示HLF的表达水平与PPAR信号呈正相关,而与NF-κB信号呈负相关。根据GSEA分析,HLF表达与脂质氧化和糖酵解显著相关(补充图6F)。

    ?重要的是,一些证据表明,HLF通过增加脂解诱导的游离脂肪酸积累,参与PPAR的易位和激活,通过破坏p65与靶DNA的结合,NF-κB信号通路广泛参与了癌症的进展和转移。PPAR信号通路由PPARα、PPARβ/δ和PPARγ等几个家族成员组成。因此,确定参与HLF抑制NF-κB信号通路以及NSCLC肿瘤发生和转移的特异性PPAR成员至关重要。

    ?首先,检测10对NSCLC组织中PPARα、PPARβ/δ和PPARγ的表达水平。如补充图6G和H,PPARα在4/10对组织中表达显著下调,PPARγ在8/10对表达,而PPARβ/δ在8/10对组织中表达上调。 已有广泛报道称PPARα和PPARγ在NSCLC中起肿瘤抑制信号的作用,而据报道PPARβ/δ对起致癌作用。

    ?Westernblot分析一致显示,HLF的上调增加了PPARα和PPARγ的总表达和核易位,增加了IκBα的表达,但降低了磷酸化的NF-κB和p65的总水平和核水平。相反,沉默HLF则发挥了相反的作用。因此,我们的研究结果表明,HLF在NSCLC中激活PPARα和PPARγ,抑制NF-κB/p65信号通路。

    ?我们使用PPARα激动剂非诺贝特、PPA

    Rγ激动剂吡格列酮和NF-κB信号抑制剂LY2409881,进一步研究了PPARα/PPARγ/NF-κB/p65信号轴在HLF在NSCLC细胞中的功能作用中的意义。

    ?我们的结果显示,在HLF沉默的细胞中,非诺贝特和吡格列酮显著上调了PPAR的活性,而LY2409881则没有上。

    ?然而,非诺贝特、吡格列酮和LY2409881差异降低了HLF沉默细胞中NF-κB信号的活性。

    ?重要的是,非诺贝特、吡格列酮和LY2409881减弱了HLF下调对细胞非锚定生长和抗缺氧能力的刺激作用。相反,非诺贝特、吡格列酮和LY2409881逆转了低营养条件下HLF下调对NSCLC细胞的促增殖(克隆生长)和抗凋亡作用